Quadrature amplitude modulation (QAM) (pronounced /ˈkwɑːm/ or /ˈkæm/ or simply "Q-A-M") is both an analog and a digital modulation scheme. It conveys two analog message signals, or two digital bit streams, by changing (modulating) the amplitudes of two carrier waves, using the amplitude-shift keying (ASK) digital modulation scheme or amplitude modulation (AM) analog modulation scheme. These two waves, usually sinusoids, are out of phase with each other by 90° and are thus called quadrature carriers or quadrature components — hence the name of the scheme. The modulated waves are summed, and the resulting waveform is a combination of both phase-shift keying (PSK) and amplitude-shift keying, or in the analog case of phase modulation (PM) and amplitude modulation. In the digital QAM case, a finite number of at least two phases, and at least two amplitudes are used. PSK modulators are often designed using the QAM principle, but are not considered as QAM since the amplitude of the modulated carrier signal is constant.

Joomla templates by a4joomla
Our website is protected by DMC Firewall!